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I. INTRODUCTION 

In a toroidal beam pipe, a wave with a particular azimuthal variation travels with 
different speeds depending on the distance from the center of the toroidal ring. For 
example, if the beam travels with velocity /?c at a toroidal radius R, the electro- 
magnetic wave traveling with the beam will have a velocity r/h/R at a radius T. If 
this velocity reaches c, this electromagnetic wave can also propagate. This wave will 
then interact back with the beam and a resonance occ~rs.r-~ The beam will see an 
impedance. The condition for this to occur is therefore5 

where R+ is the radius of the outer edge of the beam pipe. 
RHIC has a mean ring radius of ii = 610.18 m and a pipe radius of b = 3.645 cm. 

Therefore for a beam at the center of the beam pipe, such resonance will occur 
when the beam velocity p 2 (1 + b/R)-’ = 0.999940. At injection, protons and 
gold ions have p = 0.99947 and 0.99680 respectively, so no toroidal resonances will 
be excited. However, during collisions, protons and gold ions reach kinetic energies 
of 250.7 GeV/amu and 100.0 GeV/amu respectively, corresponding to p = 0.999993 
and 0.999957. Therefore toroidal resonances will be exited. 

These resonances are positioned at azimuthal harmonics of the order n:L’ N 8.1 x 
lo6 corresponding to frequencies of - 620 GHz, where n,, N O(fi/b) - 4.0 x 10“ is 
the cutoff harmonic of the beam pipe. For a perfectly conducting pipe wall, a beam 
at a particular radius T from the center of the toroidal ring may excite one infinitely 
sharp resonance at one azimuthal harmonic n, which is an integer. The resonance 
at the next harmonic n,, = n, + 1 will be excited by the beam particles at radius 
r’ which is very close to T. However, for a beam pipe with wall resistivity, each of 
these resonances will have a azimuthal harmonic width of An which is of the order of 
100. In order words, the beam at T will excite about 100 adjacent resonances which 
overlap each other. What the beam particle sees will be a broad resonance which, 
in principle, can drive a “microwave” growth. For this reason, the study of toroidal 
resonances is meaningful and important. 

II. TOROIDAL RESONANCES 

Consider a beam pipe of rectangular cross section with width 2b and height h. The 
beam is at the center of the beam pipe. The toroidal resonances can be divided into 
two series: the TM modes with vertical magnetic field vanishes and the TE modes 
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with verticcal electric field vanishes. The resonant harmonics n = nzM or nzE are given 
by solving 

TM: Z&iR+) = 0 , (2.1) 

or 
TE: i&R+) = 0 , (2.2) 

simultaneouslv with 
n2p2 d(2k - 1)2 -- 4: = R2 h2 ’ 

In above, 

zn(qir) = Yn(QiR-)Jn(4V) - Jn(qiR-)Y,(qiT) 9 (2.4) 

gn(qiv) = Y,‘(qiR-)Jn(qir) - JL(qiR-)K(qir) 7 (2.5) 

where J, and Y, are Bessel function and Neumann function of order n, and & = Rfb 
is the radius of the outer (inner) edge of the beam pipe, while i and k denote the 
radial and vertical mode numbers characterizing the resonances. 

The resonant harmonics n<k are in general very much bigger than the cutoff har- 
monic which is of the order R/b. Then, to a high degree of accuracy, the solution to 
Eqs. (2.1) and (2.3) or Eqs. (2.2) and (2.3) can be obtained simply by solving instead 

&*(2k - 1)2 

2n&h= (2.6) 

where -yi and -yi are respectively the ith zeroes of the Airy function Ai and 
its derivative Ai’( Some lowest zeroes are y1 = 2.3381, y2 = 4.0879, ... , and 
y; = 1.0188, y; = 3.2482, . . . In many cases (usually not the lowest mode), the 
third term on the left side of Eq. (2.4) can be neglected so that rzik can be solved very 
easily. 

If we take b = h/2 = 3.5 cm, R = 610 m, and y = 268.2, we obtain for the lowest 
resonance, which is a TE mode, nll - TE - 4.33 x lo6 corresponding to a frequency of 
f;,” = 339 GHz. 

Now wall resistivity is introduced as a perturbation. If we assume that the res- 
onances are far apart (which is not true), the resonances become broadened with 
figures of merit 

QzM = & md Q;E e b =2E 

&k I%. Ibeam ’ 

(2.7) 
tk 

where &E is the skin depth into the pipe wall and GE is a normalization factor 
defined as 

-%,(qiR+) - ($ - &) i’ik(qiR)] . (2.8) 
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The shunt impedances per unit harmonic are given by 

4r3-GQik (2k - 1)‘R4 IZni~I~,, TV 

z 2% 4 hb3 GM .' 

72 47rZr,Qik R4 Idi,itldzl;em 
(2.9) 

4 iiF Jq TE 
lZik 

In above, 2s = 377 a, %,,(qir) is considered a function of r defined by r = R + br, 
and the normalization constant for the TM mode is 

GM = 2 gZ;;&(q;R+) - $Z;!JqJ-)] , 
-1 

(2.10) 

The lowest TM and TE toroidal resonances for stainless steel wall conductivity 
0 = 2.0 x 10s (0.m)-i at y = 268.2 and 123.0 are listed in Table I. The former 
corresponds to the top energy of protons while the latter corresponds to the top 
energy of copper ions. Due to the incompetence of the computer program library, 
we have not been able to compute the resonances at y = 108.4 that corresponds to 
the top energy of gold ions. This is because the velocity p = 0.999957 is too close to 
the resonance requirement of p 2 0.999940 given by Eq. (1.1). However, it is clear 
that at this y, the resonant frequency will be much higher and the impedance much 
smaller. 

The resonance at harmonic next to nzE (or nT,” + 1) will be excited by the beam 
particles traveling at radius R + AR, where AR is given by 

(2.11) 

which gives 1.63 x 10m9 m for the lowest TE mode. This implies that for a beam of 
transverse width 1 mm, about 6 x 10’ adjacent resonances will be excited. The lowest 
resonance has a width An:? = nTra/QT,” = 71.2. In other words, the particles at 
each toroidal radius will excite about An T,” = 71.2 adjacent resonances. Since they 
overlap, the result is a broad band with an effective impedance per harmonic seen by 
the beam 

(2.12) 

which turns out to be independent of the wall resistivity. Since all these resonances 
overlap by so much, Eqs. (2.7) and (2.9) may not be correct at all. However, we believe 
that Eq. (2.12) should give us a reasonable estimate. These effective impedances per 
harmonic are listed in the last row of Table I. We see that the largest effective Z/n is 
only about 2 R which may be too small to excite any “microwave” growth. 
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I I y = 286.2 

I t------ 

..,,,, 

fik 3.39 x 10’ GHz 

Qik 6.08 x lo4 

&h 
‘-I 2.69 x lo-* R 

n 

I ?I7 1.g2 R 

TM 

8.36 x 10s 

6.54 x lo2 GHz 

7.95 x 104 

8.63 x 1O-3 R 

0.91 R 

y = 123.0 

TE 

8.67 x lo6 

6.73 x lo2 GHz 

5.42 x lo4 

5.57 x 10-d 0 

0.085 fl 

TM 

2.21 x 10s 

1.73 x lo3 GHz 

1.29 x 105 

1.56 x 1O-7 R 

2.66 x 1O-5 R 

Table I: Impedances and positions of the lowest TE and TM modes 
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